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Atistract. We analyse the scaling stmcture of power spectra arising from chaotic dynamical 
systems. The observation of anomalous scaling in spectral parameters can be understood 
by the use of multifractalanalysir in the frequencydomain.Thisanalysis provides numerical 
took for evaluating different chaotic behaviour. The frequency behaviour of oscillatory 
chaos seems to suggest the hypothesis of phase transition in the f (rr)-spenrum. 

Spectral analysis plays an important role in the study and characterization of complex 
dynamical systems. The main interest in working with power spectra is because in 
many cases only a one-dimensional time series of a given dynamics is known. The 
procedures deriving from Takens approach [ 11, for reconstructing dynamics are limited 
by the algorithmic implementation of box-counting techniques [Z]. Alternative pro- 
cedures must therefore be sought. Though frequency-domain analysis could provide 
an alternative starting point in the characterization of dynamical complexity so far 
this approach achieved no promising results. The spectral parameters chosen to charac- 
terize chaotic power spectra, namely spectral dimension [3,4], spectral entropy [SI, 
spectral degree of freedom [6 ] ,  are almost all subject to criticism [7]. Indeed as noted 
by Vidal and Lafon [7], the fractal nature of chaotic power spectra is still an open 
question. 

In the generally adopted paradigm in frequency-domain analysis, the basic assump- 
tion is that the power spectrum of a chaotic signal has a continuous frequency support 

Indeed, if Sf is the frequency resolution in evaluting the spectrum using fast fourier 
transform (FIT), and if P,(Sf) are the spectral components of the normalized discrete 
power spectrum, the discrete spectral entropy H ( 8 f )  

[SI. 

W a f )  = -1 P,(Sf) Iog[PX~f)l  

is related to the spectral entropy S of the normalized continuous spectral power 
density p ( f )  

S = -I ~ ( f )  l og [p ( f ) l  d f  

via the relation discussed by Powell and Percival [SI: 

H (  Sf) = S -log( Sf) Sf +o. 
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Of course, this equation is valid only if the integral S exists in the Lebesgue sense 
[9]. Moreover, under the assumption of integrability, the spectral degree of freedom 
F(6f) of a signal possessing a continuous frequency support admits the expression: 

According to ( I ) ,  (2) the scaling behaviour of H ( 6 f )  and F(SJ)  with respect to 
the frequency resolution Sf is trivial and the basic parameters are S and F,, as discussed 
by Lafon and Vidal in [ 7 ] .  

H ( 6 f )  and F ( 6 f )  were evaluated in the case of two well known chaotic systems 
[lo], namely the Lorenz system: 

X = - u ( x - y )  y = -xz + rx - y i = xy - bz 

and the Rossler system: 

x = - ( y + z )  y = x + 0.22 i = 0 .2+xz  - c z .  

The chosen parameter values are U = 10, r = 28,  b = 8/3, C = 5.7 which give rise to 
chaotic behaviour. 

The computations were performed using an Ff'r-algorithm with 216 temporal samples 
(at the maximal frequency resolution) of the components of the dynamics averaged 
over ten time series randomly chosen over 2'' samples. The zero-frequency component 
was also filtered in the time series and used Hanning filtering used to minimize sidelobe 
overlapping (leakage), [SI. 

The result of this analysis is that relations (11, (2) are not fulfilled (see figure 1). 
By analogy with the theory of generalized dimension [l I], equations (1) and (2) have 
to be replaced with the more general scaling laws: 

H ( 6 f )  = S'- D(1) lOg(Sf) 

F ( S f )  = Fb+[l- D(2)l lOg(6f) 
(3) 

where D(1) and D ( 2 )  are respectively the information and the correlation dimension 
of power spectra. Equations (1) and (2) correspond to the limiting case D( 1) = D(2) = 1. 
This experimental result can be interpreted [3] by the use of the Riemann-Lebesgue 

0- 
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l o g  ( 6 f l  

Figure 1. Evidence of anomalous scaling law: spectral entropy scaling for Rossler x- 
component A. The broken lines represent the spectral entropy scaling for a signal following 
( I ) ,  B, and for a quasi-periodic signal C. 



Multifractal analysis of chaotic power spectra 369 

lemma for the Fourier spectrum of a chaotic (non-quasiperiodic) signal. lndeed 
Blascher and Perdang in [3] assume that the Fourier spectrum of a chaotic signal is 
characterized by an uncountable set of discontinuities (singularities). 

This assumption can be generalized to the statement that to a chaotic power can 
be associated a spectrum of generalized dimension D ( 9 )  [ l l ]  related to the scaling of 
the spectral partition function: 

which for 9 = 1 is related to H(Sf) via the relation: 

The va!nes of D ( q )  can be obtained from the !og-!og plot of ry(@-) VeIslls fir 
In (4) it has been assumed that the normalized discrete spectrum could be considered 

as a probability measure on the frequency support and that the components P d S f )  
represent the measure of the box Bj(Gf )  in the Gfcovering of the frequency line: 

PdGf 1 = d d f )  ( 5 )  
8,161) 

where p ( f )  is the normalized power spectrum distribution function. 
As reported in figures 2 and 3 the assumption of anomalous scaling (4) is confirmed 

by the experimental data using Lorenz and Rossler systems. Relation (4) and the results 
of figures 2 and 3 provide a positive a positive answer to the question of the fractal 
nature of chaotic power spectra. A non-fractal power spectrum is characterized by a 
constant value of D(q) :  for periodic and quasi-periodic signals D ( q )  is uniformly 
equal to zero; for non-fractal power spectra with a continuous frequency support, 
D( 9) is uniformly equal to one. Fractal power spectra give rise to a non-constant D( 9 )  
curve. From (3) and (4) it follows that the frequency behaviour of chaotic dynamics 
can be described by means of the singularity structure of p ( f )  using the formal 
machinery of multifractal analysis [ 121. 

The next step was to study the structure of D ( 9 ) -  andf(a)-spectra of different 
components of the same dynamics. Takens’ result give rise to the intuitive expectation 

l o g  I l f l  

Figure 2. Scaling behaviour of the spectral partition function T,(Sf) for Lorenz x- 
component: A q = 10; B q = 2: C q = -2: D q = -10. The slopes of these lines give the 
corresponding values o f  D(y). 
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Figure 3. Scaling behaviour of r,(S/) for Rossler i-component: Aq = lo; B q = 2; C q = 1; 
D q = -2; E q = -5 .  For q = 1 the scaling of -H(S/)  according to the limit definition of 
r,(af) is shown. 

that all the components of a given dynamics admit the same frequency structure even 
if the power spectra may look different (for example the x-component and z-component 
of the Lorenz system). Therefore the multifractal scaling structure has to be equal or 
at least very similar. 

In working with power spectra of the same or different dynamics a general criterion 
of comparison has to be established. Indeed great caution is required with higher 
frequency spectral components for which P,(Sf) are of many orders of magnitude 
smaller than the maximal spectral component. For these P;(Sf) the noise induced by 
floating point computer arithmetics and the aliasing problem [ 131 can screen the scaling 
structure, thus giving rise to completely incorrect evaluation of the multifractal 
behaviour of the spectrum (4). 

For this reason the criterion adopted for evaluating r,(Sf) was to compute it up  
to a frequencyf*(p) given by: 

In this way the evaluation of multifractal scaling is homogeneously parametrized 
with respect to the normalized power content p. 

Therefore, instead of D(q) ,  f(a) we prefer to write D ( q , p ) , f ( a , p ) .  It is to be 
noted that computer experiments on the considered systems have shown that the 
multifractal spectrum is independent of p in the limit p + 1. 

Figures 4 and 5 ( a ) ,  ( b )  present the D ( q , p ) -  and f(a,p)-spectra of the Lorenz 
and Rossler systems. As can be seen from these figures, all the components of the 
same dynamics have similar multifractal spectra. The cusps observed in figure S(a) ,  ( b )  
are due to experimental noise for high values of 191. The small quantitative differences 
are due to the experimentally delicate compromise in the value of p. In practice p has 
to be as  close as possible to one in order to cover the overall frequency structure, but 
not too big in order to avoid the noisy high frequency P,(Sf), as previously discussed. 
Indeed, the increasing behaviour of D(q,p)-Rossler spectra for q positive is due to 
experimental errors when D(q, p )  is close to zero (see figure 4(b)). On the basis of 
these results it can be stated that the frequency scaling structure is an intrinsic feature 
of the dynamics and is independent of the choice of the component. This is of course 
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Figure 4. Multifranal D(q. p )-spectra for Larenz and Rassler system. Figure 4(0 )  shows 
the D(q,  p)spectrum of the x-compoent of  Lorenz system, with p = 0.99. Figure 4( b )  shows 
the D(q,Pj-spectrum for the three components of Rossler system with L3 =0.99999. 

interesting in time series analysis. It should be said that the only significant discrepancy 
for different components of the same dynamics has been observed for the values of 
generalized dimensions of Rossler system in the neighbourhood of q = 1. This dis- 
crepancy is evident in figure 4(b). 

Comparison of the two systems brings out a clear distinction in the frequency 
domain between ‘fully developed chaos’ (Lorenz system) and ‘oscillatory chaos’ (Ros- 
sler system). The distinction between oscillatory (periodic) chaos and fully developed 
chaos has been introduced by several authors in connection with the qualitative 
behaviour of power spectra. Thomas and Grossman [14-151 studied the correlation 
function and the power spectrum of the discrete quadratic map in periodic chaos 
regime, obtained for the bifurcative structure of the map. Roughly speaking periodic 
chaos is characterized by a dynamical evolution that still maintain traces of periodic 
structure while developed chaos has no traces of periodic structure anymore [16]. 
Ideda and Akimoto explained the route periodi.: chaos + developed chaos in connection 
with optical turbulence [ 161 as a breaking of dominance of periodic isomeric structures. 
Similar behaviour has been observed by Vidal in analysing the bifurcation route of 
the Belousov-Zhabotinsky reaction [17]. 

In terms of multifractal analysis a more quantitative distinction between oscillatory 
chaos and fully developed chaos can he stated as follows: the former is characterized 
by a smooth D(q,  p)-spectrum; the latter by a sharp transition for negative and positive 
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Figure 5. Multifractal J(q P!-spenra for Lorenz and Rassler system. Figure S(n! shows 
thej(o,p!-spectra of the three components A x-camp, B y-comp. C 2-camp, p =0.99. 
Figure S ( b )  shows the J ( m ,  p)-spectrum for Rossler 1-component with p = 0.99999. 

values of q. In this sense the difference K ( p )  = D ( - q  p )  - D(m, p )  represents a useful 
short-cut parameter for distinguishing periodic and developed chaos. If K ( p )  is small 
the chaotic frequency structure is homogeneously distributed revealing the absence of 
dominant periodic peaks. In particular K ( p )  is equal to zero for white noise. 

The frequency behaviour of oscillatory chaos can be intuitively understood if the 
frequency spectrum is regarded as the superimposing of a regular multifractal spectrum 
and of periodic dominant components. For negative values of q, the fractal structure 
prevails; for positive q values the strong periodicity of the signal causes the D(q,  p )  
values to collapse rapidly to zero. Our computer experiments seem to suggest the 
hypothesis of a phase-transition [18-201, in the f(a, p )  frequency domain spectra in 
the neighbourhood of q = 0, due to competition in the multifractal structure between 
these two different types of dynamical behaviour, figure 5 .  The fact that our computer 
simulation experiments seem to lead to a phase-transition at q = 0 could be related to 
the violation of the decorrelation assumption [ 141: if we decompose the power spectrum 
into a periodic part and a chaotic part, these two contributions are correlated. In 
absence of this correlation one may expect a transition in the D(q, p)spectrum at q = 1. 

To sum up, we have shown that frequency domain analysis using a multifractal 
approach can give interesting results in understanding the structure of chaotic signals. 
Much work still remains to be done particularly with regard to elucidaiing the relation- 
ship between multifractal analysis of frequency spectra and the corresponding analysis 
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of the attractor in phase space. Furthermore the phase-transition hypothesis in oscilla- 
tory chaos needs further investigation to confirm its validity. Finally it should he 
emphasized that the method discussed in this work is directly applicable to time series 
analysis. 
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